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ABSTRACT

A strong-weak coupling duality symmetry of the string equations of motion has been

suggested in the literature. This symmetry implies that vacua occur in pairs. Since the

coupling constant is a dynamical variable in string theory, tunneling solutions between

strong and weak coupling vacua may exist. Such solutions would naturally lead to non-

perturbative effects with anomalous coupling dependence. A highly simplified example is

given.
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Matrix model descriptions[1] of strings in low dimensions provide tractable generating

functionals of string perturbation theory. At large orders, the perturbation theory for

these strings grows at order k as (2k)! rather than the usual k! found in most field theories.

Shenker[2] has presented arguments based on properties of the moduli spaces of Riemann

surfaces with k handles that this growth is generic. However, a spacetime interpretation

of the origins of the nonperturbative effect underlying this growth is not known. This is

the issue we address here.

In field theory, the growth of perturbation theory is related to the coupling constant

dependence of nonperturbative effects[3]. Starting with Z(g) ≡
∫

Dψe−S ≡
∑

gkZk,

Lipatov’s argument[4] applies saddle point analysis to Zk =
∮

dgg−k−1Z(g) for large k.

For S[ψ, g] =
∫

dDx
[

(∂ψ)2 + gn−1ψ2n
]

, the saddle point equations for gs, ψs are:

k + 1

gs
+ (n− 1)gn−2

s

∫

ψ2n
s = 0,

−∂2ψs + ngn−1
s ψ2n−1

s = 0.

(1)

Rescaling
√−gψ = φ, one finds Zk ∼ g

−(k+1)
s e−S(φs,1)/gs , where S(φs, 1) is independent

of k,

gs =
1

k + 1

∫

φs∂
2φs

n− 1

n
, (2)

and the l.h.s. of this equation is negative definite if φs is real. Eq. (2) implies that Zk grows

as k!, up to factors of the form kαAk which come from taking into account fluctuations

about, and zero modes of, the saddle point configuration. (Of course, Zk is only nonzero

in this example when k = 0 mod (n − 1).) For a more general potential the argument

goes through similarly. The above explicitly shows that φs, the saddlepoint solution, is

independent of k, so the growth in the perturbation series is due to the explicit 1/g in

front of the rescaled action.

In the case of an effective action, write ψ ≡ ψ̃ + ξ, and integrate out the fluctuations

ξ above some mass scale to get Z(g) =
∫

Dψ̃e−Seff(ψ̃). Its saddle point is at ψ̃ such that

δSeff/δψ̃ = 0. Schematically then, ignoring zero modes,

k + 1

gs
= −∂Seff

∂g
|gs,ψ̃s

, (3)

may be expected to reproduce the same k! growth as discussed above. However, quantum

effects (due to the fluctuations that have been integrated out) may induce a change in the

vacuum structure[5] and thus allow for new solutions with anomalous g dependence. A



recent example, due to Bhattacharya et al.[6], shows in the context of an SU(N) gauge

theory at high temperature that such a change in vacuum structure due to radiative cor-

rections does indeed lead to anomalous g dependence of the interface tension of domain

walls between quantum vacua. Calling the string coupling constant κ, the (2k)! growth in

string theory would follow from an instanton action scaling as κ. One sees from the above

that explicit terms of O(κ) in the action may not be necessary to produce this.

We suggest that a strong-weak coupling duality in string theory1 may lead to non-

perturbative effects with anomalous κ dependence, as follows. This duality interchanges

strong and weak coupling, and the rôles of particles and solitons. It leaves the equations of

motion invariant, but not the action. Thus solutions to the equations of motion, e.g., vacua

of string theory, are related by this symmetry and generically appear in pairs. Because the

duality involves the loop counting parameter, the multiple vacua will only become evident

in the equations of motion when quantum corrections are included. The coupling constant

in string theory is a dynamical variable, so there can be field configurations that interpo-

late between such pairs of vacua. The actions of such configurations will scale anomalously

with what we interpret in (one of) the weak coupling vacuum(vacua) as the coupling.

The concepts of tunneling and anomalous scaling must be made precise for these

configurations, since they involve changing the dilaton field whose expectation value de-

termines the coupling. In this form of duality, physics in the strong coupling vacuum has

a description in terms of weakly coupled solitons. A complete tunneling process should

be described as tunneling from the weak coupling vacuum (κ small) until a point in field

space where κ = O(1), after which the appropriate description is one of tunneling into the

strong coupling vacuum (κ−1 small), described in terms of the weakly coupled dual theory.

In a given weak coupling vacuum, the effective action is a series in some small parameter.

Nonperturbative effects usually have actions ∼ O(1/κ2). Here, in a given perturbative

vacuum one can identify the coupling. What is meant by anomalous scaling is that the

actions of the instantons will not be ∼ O(1/κ2).

This can be demonstrated in a toy model, putting the system in finite volume and

neglecting gravity. The scaling is anomalous and depends upon the details of the potential.

The duality symmetry appears in the equations of motion for the action in the Einstein

1 This has recently been discussed in several string backgrounds [7][8][9][10][11][12]. It gener-

alizes a duality found in supergravity, for extensive references see [11].



basis, where the metric has been rescaled so that the coupling does not appear out in front

of the action. Leaving out gravity and other fields, the action is

S =

∫

dD−1xdt

[

(
∂κ

κ
)2 − V (κ)

]

(4)

In finite spatial volume of size LD−1 a time dependent classical solution to the equations of

motion has finite action2. Searching for a solution κ = κ(t) and using energy conservation,

(

1

κ

dκ

dt

)2

+ V (κ) = E , (5)

choose V (κ) = g(κ)2, g(κ) = g(1/κ). The extrema of V are at 2g(κ)g′(κ) = 0. Consider a

path starting at κ0 and ending at 1/κ0, where g, κ0 obey g(κ0) = g(1/κ0) = V (κ0) = E =

0. Then from conservation of energy, for this classical solution, dκ/dt = κ
√

−V (κ) and

Scl = −
∫

dD−1xdt 2V (κ) = −LD−1

∫

dκ
dt

dκ
2V (κ) = 2iLD−1

∫ 1/κ0

κ0

dκ

κ
g(κ) (6)

For a potential g(κ) =
∑

an(κ
n + κ−n),

Scl = 4L3i

[

∑

n>0

an
n

(κ−n0 − κn0 ) − 2a0 lnκ0

]

(7)

The simplest potential with an extremum away from κ = ±1 is V = (κ + 1/κ − a)2.

The minima (couplings in the perturbative vacua) are κ± = (a/2)
[

1 ±
√

1 − 4/a2
]

. The

corresponding action, when a is large, scales to leading order as 1/κ−, that is, in theories

where the coupling κ− is small. The coupling constant dependence of the action evaluated

at this solution receives corrections from the measure due to zero modes, altering e.g. the

logarithmic dependence on the coupling. Solutions to the equations of motion which keep

the dilaton fixed have actions that scale as κ−2 as usual.

If strong-weak coupling duality is generic to string theory, an understanding of it

should be based on a stringy formulation (such as can be done for R ↔ 1/R duality,

and its generalizations, in string field theory[13]). So far, supporting arguments for this

duality have been presented that are specific to particular string backgrounds[7][8][11][12].

A coupling constant duality has been conjectured[7] in ten dimensional string–five-brane

duality[14][7]. In the case of compactification of the heterotic string on a six dimensional

2 JDC thanks J. Polchinski for discussions about this.



torus, it was found that dyonic solutions to the equations of motion were duality invari-

ant[10], and Sen[15] showed that this duality is a full symmetry of the equations of motion

(of the low energy weak coupling lagrangian). He also showed that the spectrum of the

charges of the particles and the solitons is consistent with this duality[16][17].

Jevicki[18] has also found a duality between the solitons and particles in the c = 1

collective field theory of matrix models with no matrix model potential3. It is a symmetry

of the equations of motion but not of the action. It is not clear whether this is a strong-weak

coupling duality because the spacetime interpretation is unknown.

A calculable example is required to see the consequences of nonperturbative effects

due to the pairing of vacua caused by strong-weak coupling duality. It is necessary to

have a tractable description of the theory for the regime where κ ∼ O(1). One difficulty

with computations in the known examples is the requirement that one explicitly express

the fields in the dual vacua in terms of each other, Φdual = Φdual[Φ]. This must be done,

when κ ∼ O(1), in order to match tunneling solutions coming out of/going in to the dual

vacua. The examples with N = 4 supersymmetry have strongly constrained radiative

corrections and may allow calculations of tunneling effects. Sen[17] points out that the

tree-level spectrum of the strongly coupled theory may be preserved in some cases due

to supersymmetry nonrenormalization theorems. Ref. [8] pointed out several analogies

between R ↔ 1/R duality and strong-weak coupling duality. For N = 1 supergravity in

four dimensions they wrote down the most general superpotential for the field S = eφ + ia

(φ is the dilaton, a is the axion) which is without singularities for finite values of S. It

may be possible to have more general duality invariant couplings for the kinetic terms and

couplings to other fields. Neglecting gravity and other fields besides the axion, and putting

the system in a finite volume, these potentials can be treated as above (or by using [20]).

For time dependent solutions interpolating between a supersymmetry preserving minimum

at Smin and its dual, the dependence upon Smin goes as |eiθW (Smin)(1− eiβSmin)| times

the volume. Here β, θ are phases, and θ is chosen to maximize the action. Ref. [8] points

out that duality symmetry may prevent an arbitrarily weak coupling expansion from being

valid, see also Ref. [21].

It is not clear how to connect strong-weak coupling duality to the source of nonper-

turbative effects which has been identified[2] in solvable matrix models of string theory.

3 This theory maps[19] to the c = 1 collective field theory with a matrix model potential and

a time dependent chemical potential.



The bare coupling constant is N−2. The models reduce to the study of the interactions of

N eigenvalues. The leading nonperturbative effects are tunnelings of individual eigenval-

ues[22][2] in the matrix model potential. Since 1/N of the degrees of freedom are involved,

the motion results in an instanton action ∼ e−SinstN
2 ∼ e−(const.)N . There have been some

attempts to describe these in the string field theory for the c = 1 matrix model4. There

are many nonperturbative definitions of the c = 1 theory[27]. One possibility, if there exist

boundary conditions which respect this duality symmetry, is to require5 duality symmetry

to be respected by the nonperturbative definition of the model.
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